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Abstract. Climate change is heavily impacted by changing vegetation cover and productivity
with large scale monitoring of vegetation only possible with remote sensing techniques. The
goal of this effort was to evaluate existing reflectance (R) spectroscopic methods for
determining vegetation parameters related to photosynthetic function and carbon (C)
dynamics in plants. Since nitrogen (N) is a key constituent of photosynthetic pigments and C
fixing enzymes, biological C sequestration is regulated in part by N availability. Spectral R
information was obtained from field corn grown at four N application rates of 0, 70, 140, 280
kg N/ha. A hierarchy of spectral observations were obtained: leaf and canopy with a spectral
radiometer; aircraft with the AISA sensor; and satellite with EO-1 Hyperion. A number of
spectral R indices were calculated from these hyperspectral observations and compared to
geo-located biophysical measures of plant growth and physiological condition. Top
performing indices included the R derivative index D73¢/D7¢s and the normalized difference of
R750 vs. Rygs (ND7gs), both of which differentiated three of the four N fertilization rates at
multiple observation levels and yielded high correlations with these carbon parameters: light
use efficiency (LUE); C:N ratio; and crop grain yield. These results advocate the use of
hyperspectral sensors for remotely monitoring carbon cycle dynamics in managed terrestrial
ecosystems.
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1 INTRODUCTION

With the changing climate, there is a need to understand the dynamics of CO, uptake by
ecosystems as they cycle through seasonal changes and respond to variable environmental
conditions such as water, temperature, and light and nutrient availability [1,2]. Terrestrial
ecosystems absorb approximately 120 Gt of carbon (C) annually through the physiological
process of photosynthesis [3]. This biological C sequestration process is influenced by
nitrogen (N) availability, since N is a key component in photochemical enzymes and light
harvesting pigments. Gross primary production (GPP) is the net effect of photosynthetic
carboxylation and photorespiration processes and is a measure of an ecosystem’s ability to
capture and store C. GPP can be described as a function of the amount of absorbed
photosynthetically active radiation (aPAR) and the efficiency by which vegetation converts
aPAR into biomass: GPP = ¢ * aPAR. The gross photosynthetic light use efficiency (LUE)
term (g) reflects the maximum unstressed efficiency achieved by the photosynthetic
apparatus. In ecosystem LUE process models, remote sensing data are used to provide
estimates of the fraction of aPAR (faPAR), typically through relationships to spectral indexes
such as NDVI [4]. If faPAR and incident PAR can be estimated using satellite data, then the
remaining unknown variable is €.
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Remote sensing offers a unique opportunity to monitor ecosystems at synoptic time and
space scales through observation and understanding of ecosystem carbon-related spectral
responses [5]. Large scale monitoring of vegetation characteristics are only possible with
remote sensing systems that rely heavily on passive reflectance (R) information. The
Hyspectral-InfraRed Imager (HyspIRI) mission defined by the 2007 NRC Decadal Survey [6]
identifies the need for a near term space-borne imaging spectrometer to globally map early
signs of ecosystem change through altered physiology. The primary instrument proposed for
the HyspIRI mission is a hyperspectral mapper with a 19 day global revisit, which will enable
imaging spectroscopy with high temporal repeat to capture the impact of environmental
perturbations on ecosystem productivity. Recent advances in airborne hyperspectral imaging
systems (i.e., AVIRIS [7], AISA [Specim, Oulu, Finland]) along with the Hyperion
instrument on the EO-1 satellite have made it possible to obtain high resolution spatial and
full range visible (VIS) to short wave infrared (SWIR) spectral information. These data can
be further employed to explore vegetation productivity and changes in both agricultural and
surrounding ecosystems, and contribute to further define algorithms and products applicable
to the HyspIRI mission. From hyperspectral data, numerous spectroscopic approaches have
been developed to utilize features in vegetation spectral curves for biophysical parameters, to
distinguish vegetation species and various physiological conditions and phenological stages
[8,9,10].

Several algorithms have been proposed to detect changes in chemical composition,
including the amount of chlorophyll (Chl), tissue water content, and the amount of lignin,
cellulose, and N using hyperspectral remote sensing data [11-23]. Photosynthetic vs. non-
photosynthetic canopy fractions can be distinguished using high spectral resolution data and
radiative transfer models [24]. Crop species under N augmentations show that certain red
edge reflectance indices perform consistently well for photosynthetic parameters but require
narrow, high fidelity spectral bands, such that few current satellite sensors can be utilized.
Therefore, the scientific fidelity necessary for operational use of spectral indices to estimate
ecosystem € has not been established. Nevertheless, the need for a remotely acquired direct
spectral method to monitor € (or GEP) is important. Improvements in the direct remote
sensing measurement of € with satellite high resolution spectral observations would reduce
the uncertainties introduced by current approaches. This research evaluated published
vegetation R indices and demonstrated successful methods to apply this information at leaf,
canopy and ecosystem scales to provide more accurate assessments of GPP in corn. The
specific objective of this study was to compare the ability of R indices at several observation
levels to discriminate among experimental treatments and identify relationships to biophysical
manifestation of N driven C uptake.

2 MATERIALS AND METHODS

The experiment site, located at USDA Beltsville Agricultural Research Center, is part of an
intensive multi-disciplinary project, Optimizing Production Inputs for Economic and
Environmental Enhancement (OPE3). An intensive ground sampling protocol was initiated in
2001 across the N test site and within an adjacent wooded riparian wetland. The corn N test
site consists of twelve 20 m x 20 m plots large enough to capture the spatial variability of
crop and soil parameters with treatment groups of 280, 140, 70, and 0 kg N / ha, which
provided a substantial range in plant growth conditions. Leaf and crop biophysical
parameters along with canopy R were acquired at the grain fill (R3) reproductive stage. Leaf
level measurements included pigment contents, optical properties, total C:N, and maximum
photosynthetic rate (An.x). Leaf measurements from 2001 to 2007 occurred in situ where
possible, otherwise uppermost fully expanded leaves (3™ leaf from terminal) were excised
from the plant canopy. In situ geo-referenced canopy measurements were comprised of leaf
area index (LAI), light use efficiency (LUE, €), grain yield (kg/ha), and canopy R.
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2.1 Biophysical Observations

Leaf photosynthetic capacity (An.x) was determined in situ with the LI-6400 photosynthetic
system (LI-COR Biosciences, Lincoln, NE). A,.x was determined under controlled
conditions of 1660 pmol m > s~' PAR, saturating CO, concentration (1000 ppm), controlled
leaf temperature (22°C), and relative humidity (~35%). LUE was calculated as the ratio of C
secured by vegetation per unit of absorbed photosynthetic active radiation (aPAR) as
determined from leaf optical properties with an ASD spectral radiometer (FieldSpec Pro,
Analytical Spectral Devices, Inc., Boulder, CO) coupled to the LI-1800 Integrating sphere.
Canopy values were estimated with the gas exchange calculator (GXC), a comprehensive
leaf/canopy gas exchange model that used key environmental variables such as LAI, PAR,
CO,, air temperature, relative humidity, wind speed, and soil moisture on corn to scale from
the leaf A .« observations to canopy gas exchange A, [24]. The canopy fraction of absorbed
PAR (faPAR.) was derived from LAI measurements using the Beer-Lambert law with the
light extinction coefficient k set to 0.55. Grain yields were obtained with a yield monitor
(AgLeader 2000, Roswell, GA) measuring the grain flow from the combine at harvest
interfaced with a differential GPS.

2.2 Spectral Reflectance

The ASD spectral radiometer was also used to measure canopy radiance 1 m above plant
canopies with a 22° field of view and a 0° nadir view zenith angle. A second cross-calibrated
ASD radiometer was used in a similar viewing geometry over a Spectralon reference panel
(Labsphere, North Sutton, NH) to simultaneously track changes in solar irradiance. The ASD
VNIR spectrometer covers the range between 350 — 1000 nm with a 512 channel silicon
photodiode array overlaid with an order separation filter to provide a 3 nm Full-Width at Half
Maximum (FWHM) spectral resolution with a 1 nm sampling interval. Two separate, thermal
electrically cooled InGaAs photodiodes are used to cover the NIR\SWIR range between 1000
- 2500 nm at a 10 nm FWHM spectral resolution. Measurements were obtained on a clear
day in a two-hour window around solar noon yielding an average PPFD of 1660 pmol m™ s
Aircraft multispectral R imagery was acquired on 8-22-2001 and 8-31-2004 with the Airborne
Imaging Spectrometer for Applications (AISA, flown by 3DI LLC, Easton MD). The
configuration of the AISA imaging spectrometer during this time period was limited to 35
narrow bands between 420 nm to 884 nm. The instrument was flown at 2,500 m with an
instantaneous field of view of 1 mrad, yielding a 2.5 m per pixel ground resolution.
Hyperspectral satellite data over the study site was acquired on 8-19-2008 with EO-1
Hyperion with 10 AM overpass and a 30 m ground resolution. The Hyperion Level 1R data
product has 220 contiguous radiometrically corrected 10 nm FWHM spectral bands covering
the spectral range from 400-2500 nm.

2.3 Computation of R Spectral Indices

A number of R indices were evaluated based on two criteria: consistent performance over all
measurement scales, and reproducible correlations to biophysical measures of plant growth
and condition. The equations defining top performing R indices are summarized in Table 1.
These equations were applied to R spectra at all observation levels. A Gaussian 1 nm FWHM
spectral resampling procedure was applied to the AISA multispectral imagery to provide a
contiguous spectrum over the wavelength range of 500 to 900 nm. Due to the discrete
characteristic of the spectral sampling interval, spectral derivatives were expressed as D, =
(Ra+1 - Ry) / AN, where A corresponds to the reported wavelength and A £+ 1 is governed by
the native spectral sampling interval.
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Table 1. Reflectance spectral indices identified as exhibiting significant relationships to
corn growth and condition at three observation levels: leaf, canopy, and aircraft.

Spectral Index

Reference

Clied-edge = (R770-800/R720.730)-1

CRlsso = (1/Rs10)-(1/Rs50)

D73¢/Dros

Dinax/Dr0s

Dinax/D7a4

EVI = 2.5(Rs40.875 - R620-670)/(Rsa0.875 T 6Re20.670 + 1)
MCARI, = [(R700-Re30)-0-23(R700-Rs50)1(R700/Re30)
ND705 = (R750-R705)/(R750TR705)

mND75 = (R750-R705)/(R750TR705-2R445)

NDVI = (R774-Re67)/(R774+Rg67)

PRIss0 = (Rss50-Rs31)/(RssotRs31)

Gitelson et al., 2004
Gitelson et al., 2002

Filella & Penuelas 1994
Curran et al., 1995
Huete et al., 2002
Daughtry et al., 2000
Simms & Gammon 2002
Simms & Gammon 2002
Tucker 1979

Gammon et al., 1992

R705/Ro3o Read et al., 2002
R750/R70s Gitelson et al., 1994
R740/R729 Vogelman et al., 1993
R750/Rss0 Gitelson et al., 1994
Rgoo/R7s0

Rgs0/Rss0 Datt et al., 1998

TCARI = 3[(R700-R¢70)-0.2(R700-Rs50)(R700/Re70)]
VOG = (R734-R747)/(R715tR729)

Haboudane et al., 1995
Vogelman et al., 1993

3 RESULTS

3.1 Biophysical Summary of Field Corn Growth

Multi-year analysis (2001 to 2007) of field corn growth indicated that values for leaf variables
(Chl, N, &) and crop variables (faPARc, €c, grain yield) increased with N level (Table 2).
Foliar N content increased with application rate, with the ANOA model successfully
discriminating the four treatment levels at a minimum significant difference of 0.084 g m™.
For the remaining foliar variables (Chl, C:N, and €1) and the three canopy variables (faPARg,
€, grain yield), similar values were obtained for the N treatment groups > 140 kg N/ha which
were significantly higher than values observed for treatments < 70 kg N/ha. The GXC model
provided good agreement between measured and observed €, with a slightly higher bias in the
modeled parameter. Further LUE increases were incurred by the inclusion of all leaf layers in
the GXC scaling from & to &c. Overall, the analysis of corn growth and condition indicates
the recommended N application rate of 140 kg N /ha was optimal for corn grown at this
location on a sandy loam soil, while lowering the application rate produced crop symptoms
consistent with N deficiency.
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Table 2. Multi-year analysis of leaf and canopy biophysical parameters as a function N
application rate.

Nt @t emdy ON s’ JPAR sy’
280 0.58 a' 1.97 a 149 a 034 a 0.77 a 0.62 a 723 a
140 0.55a 1.88b 158 a 0.33a 0.76 a 0.61 a 7.10a
70 0.48b 1.62 ¢ 17.8b 031b 0.73b 0.57b 5.94b

0 0.29¢ 1.12d 256¢ 022¢c 0.64 ¢ 0.39¢ 3.78 ¢
LSD 5 0.025 0.084 1.04 0.014 0.016 0.023 0.277

TColumn-wise mean values (n=265) represent analysis corn growth parameters taken in the
reproductive development stages from 2001 to 2007. Means with the same letter are not separable
by a repeated measures mixed model ANOVA gp os. "Leaf and canopy light use efficiency (€) are
expressed as pg C per pmol of absorbed photosynthetically active radiation (aPAR).

3.2 Spectral Remote Sensing of C Parameters with Reflectance

Spectral index performance was evaluated against measures of plant growth condition using
correlation analysis. Results for the top performing indices exhibiting strong relationships to
LUE, C:N and grain yield across years are shown in Table 3. All of these indices showed
good correlation (r > 0.70) to at least one leaf, canopy, or aircraft variable. Since the columns
for the three biophysical assessments were obtained on excised leaf material with a laboratory
based spectrometer attached to an integrating sphere, reported relationships are solely
attributed to variations in leaf chemical and structural composition. Whereas for canopy and
aircraft observations, variations were due to many factors including; light history, bi-
directional R distributions, and canopy structure, which have impacts on the observed
relationships. The highest association was obtained with the derivative index D /D744 in the
near-field canopy R observations for C:N (r = 0.90) and LUE (r = -0.88). The fixed
wavelength derivative index D739/D7os also performed well with consistently high correlations
for all three variables across measurement scales (0.75 > r > 0.85). NDVI, historically being
associated with canopy biomass, performed as expected with relatively poor leaf level
physiological associations, which significantly improved for canopy and aircraft observations.

For this study, the NDs index provided higher correlations and more consistent results
than the more traditional NDVI formulation, and was similar in performance to D730/D7os
across variables and measurement scale (0.70 > r > 0.82). The PRIss,, which is commonly
used as a remotely sensed indicator of LUE in plant canopies, performed moderately well
(0.68 > r > 0.74) at the leaf and aircraft levels but was ineffective in the near canopy
observations. At the ASD near-field canopy observation level, the D730/D7ps and ND7gs
spectral indices performed well in detecting N treatment level with minimum significant
index differences of 0.108 and 0.019 respectively [In 24, Table 4b]. At the AISA aircraft
observation level these two spectral R indices differentiated the four N application rates [In
24, Table 4c]. These observations imply that N induced changes in leaf physiology combined
with changes in canopy structure (faPAR, Table 2) contributed to improved index
performance when scaling from leaf to aircraft observation levels.

3.3 Spatial Analysis of Crop Condition

The ND-gs and D73¢/D79s R images with spatial extent covering the N experiment site at OPE3
along with kriged yield monitor data in a 2 m grid are shown in Fig. 1. The N treatment plots
are delineated with a white vector overlay on the geo-coded raster images. Here, spatial
associations are evident between each of the two R indexes and yield monitor data with
variation induced by N application rates are visually apparent; color bars at the bottom of
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Table 3. Pearson correlation coefficients (r, n=265) for the relationship between 19 narrow-band
spectral indices and physiological measures of plant growth at leaf (L), near-field canopy (C),
and far-field aircraft (AISA) measurement scales.

LUE' C:N Yield
R Index
L C AISA L C AISA L C AISA
Clegedee | 0.75%  0.77 076 | -0.77 -0.81  -0.80 0.75 0.83 0.78
CRlssp -0.82 -025 -0.71 0.85 0.20 071 | -0.80 -021  -0.68

Ds;/Dys | 075 080 079 | 077 -084 -0.81 | 079 085  0.79
Dya/Dos | 066 073 078 | -068 077 -0.81 | 071 08  0.79
Dpa/Dyas | 072 -0.88 -075 | 073 090 080 | -068 -0.73 -0.76

EVI 059 068 076 | 059 -074 -0.79 | 043 073  0.77
MCARI, | -0.73 -053 -0.81 | 075 053 084 | -0.73 -056 -0.77
ND+s 074 078 079 | 076 -0.82 -0.81 | 070 076  0.78
mND,s 074 077 079 | 075 -0.82 -0.81 | 070 076  0.78
NDVI 027 066 076 | 025 -071  -0.79 ns 062  0.77
PRIs, 071 036 073 | 073 -037 -0.74 | 071 038  0.68

R505/Ro30 -0.76 -0.82 na" 0.77 0.85 na -0.72 -0.79 na
R750/R705 0.71 0.70 0.76 -0.73 -0.75 -0.78 0.69 0.77 0.78
R740/R720 0.75 0.76 0.77 -0.77  -0.81 -0.80 0.76 0.81 0.78
R750/Rs50 0.72 0.73 0.76 -0.74 -0.78 -0.78 0.64 0.84 0.76
Rso0/R750 0.72 0.74 0.75 -0.73 -0.76  -0.80 0.78 0.86 0.76
Rgs0/Rss0 0.73 0.74 0.76 -0.74 -0.79  -0.79 0.66 0.87 0.76
TCARI -0.73 -0.54 -0.82 0.75 0.56 0.83 -0.66 -0.60 -0.77
VOG -0.74 -0.74  -0.77 0.76 0.78 0.80 -0.76  -0.82 -0.78

"Midday light use efficiency was used for leaf (&) while for canopy and aircraft observations the

GXC scaled €. was used. *Except for low correlation between leaf-level NDVI and yield, r values
were significant at P<0.01. “Band not available (na).

each panel depict the magnitude of variation, where black is associated with low and yellow
indicating high index or yield values. Observed within-plot variation is attributed to variable
soil and hydrological properties. Overall, the low N application rates are evidenced by blue-
green hues while the high N application rates are indicated by red-yellow hues.

The relationship between LUE and ASD leaf, ASD canopy, AISA aircraft versions of the
D730/D79s and NDys indices were further explored in [In 24, Fig. 6] where observations
implied a significant relationship between LUE and early to mid-day R indices. The NDqs
and D+30/D79s R images with spatial extent covering the entire OPE experiment site along with
the yield monitor image delineating the size and extent of the 12 N treatment plots are shown
in Fig. 2. Again, color bars at the bottom of each panel indicate the magnitude of variation
with black indicating low and yellow indicating high index or yield values. The soil berms
delineating the four hydrologically bounded watersheds are visible in the imagery as low
index and yield values. Variation is evident with spatial associations between yield monitor
and R indices apparent in several clusters of low and high performing areas of the field.
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0 NDyq5 11 DD 4 0 Yield (Mgfha) 10

Fig. 1. Reflectance normalized difference (left) and reflectance derivative ratio (middle)
spectral indices along with yield monitor data (right) for the 12 N treatment plots located at
the OPE field site as determined from AISA 2004 mulitispectral imagery.

One more observation level was added by including Hyperion satellite data. The
relationships between yield monitor data and R indices determined from ASD, AISA aircraft,
and Hyperion R for D73¢/D7gs and ND7os were further explored in Fig. 3. The left most scatter
plots indicate the association of near field canopy ASD R index observations to yield monitor
data extracted from the 12 N treatment plots across multiple years (n=265, corresponding to
area shown in Fig. 1). The scatter plots in the center and to the right show the respective
associations for these two indices computed from aircraft (AISA 2004, n=1920 pixels) and
satellite (Hyperion 2008, n=335 pixels) to yield monitor data for the full OPE field site.

0 NDy45 L1 Dy3¢/Digs 4 0 Yield (Mg/ha) 10

Fig. 2. Reflectance normalized difference (A) and reflectance derivative ratio (B) spectral
indices along with yield monitor data (C) over the entire 4 ha OPE field site as viewed
from AISA mulitispectral imagery. Note location of the 12 400 m* N plots in C.
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Fig. 3. Reflectance derivative ratio (top) and reflectance normalized difference (bottom)
spectral indices versus yield monitor data over the OPE field site.

The direct linear association (0.63 <r < 0.85) between grain yield and the derivative ratio
D730/D79s was expressed at all three remote sensing observation levels, where index values
were ~ 1 for low performing areas of the field and approached 4 for areas with high grain
yield. A similar pattern was observed for the ND705 but the index exhibited more noise
which reduced correlation coefficients (0.47 < r < 0.78). These early to mid-day remote
sensing observations made of a corn canopy in the early reproductive growth phases express a
significant relationship to grain yields obtained for the mature crop at harvest.

4 DISCUSSION

From this study, a number of significant relationships were evident in R indices to the
biophysical changes in corn induced by varying N application rates. High spectral resolution
reflectance data have provided significant improvement over the broadband indices for
detection of differences in vegetation physiology. Further relationships between R and
vegetative growth parameters have also been achieved with several derivative leaf R indices.
However, the spectral sampling resolution of the AISA instrument was not sufficient to
accurately identify the wavelength position of D« or indentify a significant red-edge shift in
N limiting environments. However, the shift was observed in 10 nm FWHM continuous
hyperspectral sampling of AVIRIS and Hyperion, reinforcing the importance of continuous
sampling versus spectral resolution for applications involving derivative spectroscopy. The
recent advances in airborne hyperspectral imaging systems (i.e., AISA EAGLE & Hawk)
along with the steady progress of the AVIRIS group [7] have made it possible to obtain high
resolution spatial and full range VIS to SWIR spectral information that should be further
employed to explore the impact of N availability on vegetative C uptake in both agricultural
and natural ecosystems.

Timely, spatially explicit information can provide input into decisions about management
of agriculture and other ecosystems to mitigate negative effects. The observations would also
underpin improved scientific understanding of ecosystem responses to climate change and
management, which ultimately supports climate modeling and forecasting capabilities.
Vegetation change, in turn, feeds back into the understanding, prediction, and mitigation of
factors that drive climate change. The HyspIRI mission defined by the NRC Decadal Survey
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[6] identifies the need for a space-borne VSWIR hyperspectral imaging spectrometer for
global surveys, especially to detect early signs of ecosystem change. The proposed HyspIRI
mission with its global mapping capability at a 19 day revisit will enable hyerspectral imaging
spectroscopy to capture the impact of disturbance events on ecosystem LUE seasonally. The
findings achieved here with EO-1 Hyperion demonstrate the utility of space-borne imaging
spectroscopy to monitor ecosystem carbon exchange and LUE.

5 CONCLUSIONS

Here multiple years of spectral observations of field corn made at leaf, canopy, aircraft, and
satellite observation levels were used to: indentify spectral R indices that consistently track
biophysical changes in field corn indicative of productivity; establish spectral R index
performance across observation levels and through time; provide a synopsis of top performing
spectral indices to monitor N driven C dynamics in field corn. Results presented here indicate
significant relationships exist between narrow band spectral R indices to C related vegetation
parameters. These results strongly support the application of high resolution imaging
spectrometers for remotely monitoring carbon cycle dynamics in terrestrial ecosystems and
provide critical information to define the optimal narrow bands required for monitoring
ecosystem health from earth-orbiting satellites.
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